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ABSTRACT
Internet of Things has a profound effect on everyday life and critical
vertical services including healthcare, factories of the future and
intelligent transport systems. The highly distributed nature of such
networks and the heterogeneity of the devices, which constitute
them, necessitates that their users should be able to trust them at all
times. A method to determine the device’s service trustworthiness
is Trust Management (TM), which assigns scores to devices accord-
ing to their trustworthiness level, based on evaluations from other
entities that interacted with it. Often Internet of Things devices that
just joined the network, have not interacted with any other entity
of this network before, hence there is no way to determine its trust-
worthiness. Such an event is referred to as the cold start trust score
or initial trust score problem. The majority of the trust management
approaches address this problem by setting an arbitrary initial trust
score, while others will ignore it. Assigning arbitrary trust scores
for devices connected to the network for the first time has the po-
tential to disrupt the operation of the entire system, when a high
trust score is assigned to a non-trusted malicious device, or lead
to unfair policies, when trusted devices are assumed as potential
intruders, which also deteriorates the performance of the system.
This paper proposes a mechanism, which combines the blockchain
based BARRETT remote attestation protocol with a set of device’s
properties and communication and operational context parameters,
in order to determine accurately and assign the initial trust score to
each device. Through a set of extensive simulations over different
experimental setups, the proposed scheme is achieving to safely
distribute initial trust scores to one thousand devices over less than
6ms, while minimising the risk of computational denial of service
attacks due to the inherent characteristics of the BARRETT remote
attestation protocol.
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1 INTRODUCTION
In recent years Internet of Things (IoT) networks have gained sig-
nificant ground in everyday life by being an integral part in vital
sectors such as the industry, the public transportation, utilities, and
the healthcare. To exploit to the fullest the advantages IoT net-
works can offer to these sectors, it is necessary for the IoT devices
to interact and cooperate with each other securely and efficiently.
Inherently IoT networks are comprised of heterogeneous devices
with different hardware and software configuration, while different
vendors may have built these devices. Therefore, it is imperative for
the IoT network provider and the different involved stakeholders to
be able to unequivocally determine when a device in the network
can trust another device, from a different vendor, cooperate and
communicate with it.

In the context of IoT networks, trust refers to the expectation
that an IoT device will provide correct, truthful and reliable service
to another entity upon the latter’s request. To produce an indica-
tion regarding the trustworthiness of an IoT device, in the context
of correct service provision and cooperation, Trust Management
(TM) methods are being deployed. TM methods evaluate, establish,
maintain, update and revoke trust between devices of the same
or different networks within an IoT ecosystem [1]. A typical TM
method works as follows:
• An IoT device, namely the Service Requester (SR), requests a
service from another IoT device known as Service Provider
(SP).
• After the SP provides the service to the SR, the latter evalu-
ates the provision of service (in terms of quality, correctness,
honesty, etc.,) and assigns a score to the former. Multiple

https://doi.org/10.1145/3465481.3469208
https://doi.org/10.1145/3465481.3469208


ARES 2021, August 17–20, 2021, Vienna, Austria Michail Bampatsikos et al.

devices may evaluate the trustworthiness of one device and
give it a score.
• The TM method then aggregates all these scores and pro-
duces a numerical trust score value which in most cases is a
real number from the range [0,1] with 0 signifying complete
distrust and 1 signifying complete trust.

Such a trust score helps a potential SR to make an informed
decision whether to request a service from an SP or not. Never-
theless, there are cases in which an IoT device has just joined the
network and no device has any prior interaction with it. Conse-
quently, there is no indication regarding the trust level of the device
that just joined the network hence no trust score. This is known
as the Cold Start or lack of initial trust score problem. To tackle
this problem most approaches simply set arbitrarily the initial trust
score of the newcomer device equal to 0.5 [2, 11, 13, 15, 17] and
[6], which indicates a neutral trust level, while few approaches set
it to 0 [16] and [7]. However, this score is absolute and can be far
from the real trust level of the newcomer device and consequently
unfair since the device’s actual trust score may be close to 0. It is
unlikely a newcomer IoT device’s trust score is close to 1 since it
has not yet provided reliable and truthful service and thus there are
not enough data to predict its behavior. Finally, there are solutions
that would not consider the cold start problem, thus rendering the
entire work open to critique, regarding the initial level of trust an
IoT device should bear when requests access to an IoT network for
the first time [3, 4, 10, 12, 18], and [20]. Therefore, it is necessary to
formulate a mechanism that will produce, by considering reliable
certain factors, the initial trust score of the newcomer IoT device.
Some TM methods [5, 9], and [21] have proposed solutions to the
cold start problem. The TM method in [5] proposes to set as an
initial trust score value to a newcomer IoT device the average trust
score of all other nodes. In this approach, if the average trust value
in the network is high then the initial trust value of the newcomer
device will be high as well which is unrealistic. The authors of [9]
proposed addressing the cold start problem by attesting a set of
platform properties through Remote Attestation (RA), a process
through which an IoT device verifies the correctness of its internal
state to a remote entity known as verifier upon the latter’s request.
In this approach, it is not specified which is the set of platform prop-
erties that undergo attestation, while it does not consider the risk
of Computational Denial of Service (CDoS) attacks that a malicious
party can perform by utilizing the RA protocol. In a CDoS attack,
the verifier sends multiple Attestation Requests (ARs) to the prover
forcing the latter to keep executing the RA process thus keeping it
busy and preventing it from performing its duties.

The lack of a coherent method to satisfy the need for establish-
ing trust over the entire IoT network, including devices that may
have just requested access without any prior interaction with other
devices, is evident and obstructs the efficient and robust deploy-
ment and operation of IoT systems. Towards this end, this paper
describes a solution to the cold start problem in IoT TM systems,
which uniquely to other studies, it utilizes RA in conjunction with
a set of weighted, device related parameters and properties to pro-
duce the cold start trust score. Moreover, the proposed scheme
succeeds to protect IoT devices from CDoS attacks by incorporating
the BARRETT RA protocol [19]. It is of the essence to protect IoT

devices from these attacks, as they can interrupt services provi-
sioning, while rendering useless the existence of the TM, whose
ultimate role is the evaluation of the devices’ ability to provide
uninterrupted services. After all the purpose of TM is to evaluate
the device’s services provision.
The rest of the paper is structured as follows. Section 2 provides an
overview of the current state-of-the-art for TM in IoT, as well as
the solutions offered to the cold start problem. Section 3 presents
the architecture of the proposed approach and its components as
well as the sequence of operations. Section 4 includes the security
assumptions and threat models identified for the proposed mecha-
nism. Finally, section 5 provides insight regarding the performance
of the proposed solution and section 6 concludes the paper as well
as indicates future work.

2 RELATEDWORK
There is extensive literature in the area of trust management for
IoT networks, covering a variety of aspects related to protocol de-
sign and control plane signalling, security and efficiency. The aim
of this literature review is to identify the role of blockchain on
trust management schemes and indicate the shortcomings of these
solutions in solving the cold start problem in trust management.
Therefore, the literature review is split among studies which incor-
porate blockchain (BC) in trust management and those, which do
not.

2.1 Blockchain-based Trust Management
The authors of [13] present a TM framework that detects malicious
nodes that provide wrong or extreme trust values for other nodes.
The main usage of BC in this approach is to facilitate the exchange
of trust data among the nodes. A TM model for industrial IoT
applications is presented in [15]. The solution utilises the BC to
store trust related data. Each device assesses the trustworthiness
of other devices and computes a final trust score for them. Lwin
et.al., in [16] propose a BC-based TM system for mobile adhoc
networks (MANETs This model is a policy and reputation-based
TM framework focusing on constructing a trusted network, rather
than on calculating trust. Thework in [17] presents a TM framework
for IoT which leverages the consistency and security guarantees of
BC. In addition, a public BC along with smart contracts for forming
secure zones of IoT devices, known as bubbles of trust, is proposed
in [18]. In this approach, the BC facilitates the communications
in the form of transactions among devices from the same bubble.
While in [10] another BC technology, known as obligation chain,
allows IoT devices to consume services of other IoT devices after
agreeing to the terms and obligations present in the chain. The
ultimate purpose of this approach is to establish end-to-end trust
among IoT devices without relying on any common roots of trust
but by utilizing the obligation chain and its built-in reputation
mechanism. The authors of [12] present an anonymous reputation
system for vehicular ad-hoc networks (VANETs) which utilizes BC
technology as an immutable log that stores all messages exchanged
in the network. This approach computes trust relying on the past
and current reputation of a vehicle. The work in [11] describes a BC-
based TM model to enhance trust relationships among nodes and
to eradicate malicious ones in Wireless Sensor Networks. The trust
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evaluation process of this approach aggregates a) behavioral-based
trust, b) data-based trust and c) feedback-based trust. Boussard et
al. propose in a trust assessment framework that computes a trust
score for each IoT device in a smart home based on reported history
the BC stores [20]. To assess the likelihood of a device behaving
maliciously the proposed model considers the baseline behavior
of the device the manufacturer has specified, deviations from this
behavior and feedback for that device.

2.2 Non Blockchain-based Trust Management
On the other hand non-BC based TM mechanisms are also com-
monly studied. The authors of [2] present a model in which a node
(trustor) bases the trust it has in another on its assessment of their
current and past direct interactions as well as on recommendations.
The model assesses trust based on a set of criteria while the trustor
assigns a weight to each criterion indicating its importance. To
produce a trust score the model uses a weighted sum of the speci-
fied criteria. The work in [3] describes a graph-based recommender
system for IoT ecosystems that utilizes a collaborative filtering rec-
ommendation algorithm. To calculate trust among two nodes the
model uses a combination of centrality and trust level. Centrality
represents how central a node is in the life of another while trust
level, in the context of this work, indicates relationships among
devices. Furthermore, Frahat et al. designed a fully distributed TM
model for IoT by utilizing the holochain technology [4]. The model
has two layers, the IoT layer and the fog layer. In the first layer IoT
devices provide their trust assessment after each communication
among them. [6] proposes a trust approach based on Bayesian infer-
ence which detects malicious devices in a healthcare environment.
The model uses multiple Intrusion Detection Systems (IDSs) and
calculates device’s trust values as well as identifies malicious ones
via Bayesian inference. In [7], the authors describe a decentralized
TM scheme for vehicular networks. To compute trust the scheme
considers direct trust and indirect trust. Direct trust originates from
direct interactions among two entities while indirect trust is an
entity’s reputation. Finally, the work in [9] and its extension in [21]
propose a TM model for healthcare ICT settings that calculates an
entity’s trustworthiness based on history, recommendation, context,
and platform attestation. Although both works use attestation as
means to set an initial trust score to an entity they do not consider
CDoS attacks which can prevent an IoT device from performing its
duties and thus the provision of services. The approach this paper
introduces considers CDoS.

3 THE COLD START TRUST SCORE
FORMATION (CSTSF) MECHANISM

3.1 The CSTSF architecture’s components and
entities

The proposed mechanism comprises two components that partic-
ipate in forming the cold start score. Firstly, the BARRETT RA
protocol, which is a BC based RA procedure, contributes to the
formation of a device’s cold start trust score (henceforth denoted
as csts) by attesting its internal state while protecting it from CDoS
attacks. Secondly, the context parameter and property-based trust

score computation process. This process contributes to the forma-
tion of csts by utilizing a set of weighted IoT device properties and
operational context parameters. Both of these components form
their own trust scores which the proposed approach uses to cal-
culate the csts. In particular, the BARRETT RA protocol brings
together three individual entities.

• A BC network which is the main mechanism that protects
the IoT devices from CDoS attacks.
• The Verification Nodes (VNs) which are members of the BC
network, act as the verifiers in the context of BARRETT and
perform computations relevant to csts. There are two types
of VNs: i) Full VNs that send ARs, verify R, store a copy of
the BC and mine it. ii) Light VNs that only send APs and
verify R.
• The provers which are IoT devices and members of the BC.
The provers measure their internal state and produce R,
which they submit to the BC and send to the VN to ver-
ify it. Figure 1 depicts the components and subcomponents
of the proposed solution as well as the interactions among
them.

The BC network is the core component of BARRETT since it is
the one that enables the prevention of CDoS attacks against the
provers. It achieves that firstly by imposing a fee for every AR a
VN submits thus making CDoS prohibitively expensive in terms of
monetary cost. Additionally, smart contracts that run on the BC
notify the IoT device about an AR and set a limit to the number
of ARs that a VN can submit on the BC regarding a specific IoT
device in a predefined interval. With regards to the solution of the
cold start problem, the BC contributes by enabling the BARRETT
RA protocol. Besides performing the above functionalities, the BC
acts as an immutable record that holds information regarding the
attestation procedure. More specifically, it holds in the form of
transactions the ARs that VNs submit on the BC. Another kind
of BC transaction in the context of this approach is the one that
contains the attestation report R which indicates whether a device
passed or failed the RA process. The IoT devices as well as the
VNs are members of the BC network so that they can participate
in the overall CSTSF mechanism and interact with it. To this end
each one of these entities has BC credentials that allow it to submit
transactions to the BC.

The VNs are general purpose computers with high computational
resources in terms of processing power, memory, and storage in
comparison to IoT devices. They are responsible for initiating the RA
procedure and verifying RA reports. They possess BC credentials
that uniquely identify them to the BC and enable them to participate
in the latter and interact with it. These credentials enable VNs to
submit transactions containing ARs and Rs. To submit ARs as BC
transactions a VN must pay a fee. To this end a VN’s BC credentials
have a cryptocurrency or conventional currency balance which
enables it to submit ARs in the form of BC transactions. A VN
signs these transactions, for authenticity purposes, with a public
cryptography key pair that corresponds to these credentials. The
transactions regarding R’s verification do not require the VN to pay
a fee for their submission to the BC. Every VN holds a secret key K ,
which it shares with a prover and uses in an RA session and allows
the former to verify the attestation report R the latter sent to it. The
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Figure 1: CSTSF’s components and interactions

sharing mechanism of K is not within the current work’s scope.
Since VNs participate through BARRETT to the CSTSF mechanism
they are also charged in the context of this work with performing
all calculations relevant to the computation of the csts of an IoT
device. VNs are apriori trusted and the only malicious behavior
they may attempt is performing CDoS attacks. As mentioned in the
beginning of the current subsection there are two types of VNs, the
full VNs and the light VNs. In particular, the full VNs submit ARs
in the form of transactions to the BC, verify R a prover produced
and sent to them as well as publish the verification’s outcome as
a transaction to the BC, and perform all computations relevant to
the csts of IoT devices. Finally, they participate in the BC consensus
process and store a local copy of the BC’s ledger. On the other hand,
the light VNs perform all the functionalities that a full VN does but
do not participate in the BC consensus and do not store a copy of
the ledger locally. The Full VNs may have higher computational
capabilities in terms of processing power, memory, and storage than
the light VNs. That enables them to cope with the computational
requirements the consensus process and the storage of the local
BC ledger copy impose. Finally, although the VNs play a key role
in the proposed approach their trustworthiness is not subject to
evaluation since the service they provide is not the focal point of
this work.

At the heart of the proposed approach lie the provers, which are
IoT devices andmembers of the BC. The provers have BC credentials
with a cryptocurrency balance and can submit transactions. As in
VNs’ case, the BC credentials have a public cryptography key pair
that enables the prover to sign the transaction it generates and
control its credentials. Moreover, the process that calculates the
checksum of the prover’s internal state in the context of RA resides
in the prover. The prover’s ROM stores the RA process’s code and
the secret key K that the prover shares with a VN to protect them
from alteration. The prover’s security architecture protects K and
the Ethereum account’s private key from unauthorized use. After
the smart contract notifies the prover that a VN has submitted an
AR addressed to it on the BC, the prover computes the checksum
of their internal state and produces R. Then the prover submits R
to the BC in the form of a transaction and at the same time sends
it to the VN who verifies it. In most cases, provers have low-end
resources in terms of computational power, storage capacity and
memory. Thus, a CDoS attack can easily make them unavailable.

Moreover, all trust computations the proposed approach performs
pertain to these devices.

Finally, the smart contract is responsible for handling and regulat-
ing the submission of ARs to the BC. Specifically, it sets a maximum
limit to the total number of ARs that all the verifiers can submit to
the BC in a predefined period of time. That happens only in case all
these ARs concern the same prover. If the submitted ARs reach this
limit, then the smart contract accepts no more ARs concerning that
prover to the BC until that period of time elapses. To perform these
functions, the smart contract stores the identifiers that correspond
to the BC credentials of each prover and each VN. It also stores the
identifiers to impose control w.r.t. which BC nodes can participate
in BARRETT and send ARs. Details regarding the deployment and
implementation of the smart contract are outside the paper’s scope.

3.2 Cold start trust score formation (CSTSF)
mechanism’s sequence of operations

The CSTSF mechanism’s sequence of operation has the following
three phases.

• Initially the BARRETT RA protocol executes and verifies
the correctness of the device’s internal state and outputs a
binary value signifying the protocol’s success or failure.
• Then the generation of the RA based trust score (RAts) and its
assignment to the IoT device takes place. In the same phase
the computation of the device’s trust score based on context
parameters and device properties (Henceforth denoted as
ppts.) occurs.
• The final phase is the computation of csts which combines
the RAts and ppts.

The two processes operating in the second phase, namely the pro-
cesses that generate RAts and ppts, are independent from each other
and may execute in parallel. Figure 2 provides a high-level overview
of the proposed solution’s phases and flow of operations.

During the initial phase of the BARRETT RA protocol a VN
that wishes to send an AR to an IoT device/prover pays a fee and
submits as a transaction the AR via a smart contract to the BC.
After the transaction validates, it is inserted to a block, and then
the BC consensus process [22] adds that block the BC ledger. Once
the block is part of the ledger, a smart contract notifies the prover
about the AR. The prover authenticates the AR and invokes the
RA process with a key K , that shares with the VN node that sent



Solving the cold start problem in Trust Management in IoT ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 2: CSTSF’s scheme phases of operation

the request, and its internal state as inputs to the process. If R is
correct the VN accepts it otherwise it rejects it. Both cases play a
role in the formation of csts, while the CSTSF mechanism utilizes
the outcome of the BARRETT RA process to produce the Remote
Attestation-based trust score (RAts). The RAts variable can take
a real numerical value which is equal to 0 or 1 depending on the
attestation’s outcome. In case the device is successfully attested
RAts = 1 else RAts = 0. After the BARRETT RA completes and the
CSTSF mechanism generates RAts the second phase of operation
begins. More specifically, CSTSF computes the second part of an
IoT device’s initial trust score by considering device properties and
context parameters.

In the context of this work the term device properties refers
to the characteristics, specifications, and functionalities that may
affect a device’s security and the services it provides. On the other
hand, context parameters refer to the various factors outside of
the device that may affect the device’s security and the services it
provides. Each of these properties and parameters corresponds to a
weight, which is a real number from the range [0,1] and indicates
the impact each property or parameter has on the formation of ppts.
Thus, the trust score value ppts ∈ [0, 1] is the weighted average of
the device properties and parameters.

In its third and final phase, the presented approach computes the
csts as a weighted sum of RAts and ppts. As in the case of all trust
scores that the proposed approach computes, the weights of RAts
and ppts (respectively denoted as RAwts and ppwts) in the weighted
sum that produces csts are in the range of [0, 0.5] and signify the
impact of these variables to the formation of csts. However, the
value of csts is a real number in the range of [0, 0.5] since 0.5
is the maximum value that an initial trust score can have. The
defined algorithm for the CSTS formation is depicted in Algorithm
1 (Henceforth referred to as “the algorithm”). The use of weighted
sum and weighted parameters to produce a trust score can also be
found in similar works from the literature [2, 14].

Without loss of generality the device properties the CSTSF for-
mation mechanism considers, include:

• The device’s computational resources specifications. These
specifications include processing power, RAM memory, stor-
age capacity, and connectivity capabilities.
• Presence of crypto processor (e.g., TPM) in the device.
• Presence of security-related instruction codes (e.g., SGX) in
the device.

The context parameters that CSTSF mechanism considers are:

• The device’s premise, which indicates the device’s location.
For example, if the device is in an industrial facility or com-
mand center it is more secure, and thus more trusted com-
pared to a device located in a house.
• The context of the application in which the device partici-
pates.
• The device’s owner and operator. E.g., is the owner a user
that just joined the ecosystem or is it an ICT provider that
has been in the ecosystem for years.

The proposed algorithm treats the parameters and device properties
as a tuple with values of 1 and 0 with 1 signifying that the parame-
ter/property is used/present while 0 indicates that this parameter
property is not used/present. However, the computational resources
capabilities take a real value from 0 to 1 in this tuple since this value
is essentially a computational resources score. The rationale behind
assigning this value is that every IoT device has computational
resources. To each entry in the parameter and property tuple a
weight value corresponds which indicates the significance of each
property and parameter to the computation of the ppts value.

In order for the maximum value of csts to be equal to 0.5 the sum
of ppwts and RAwts must be lesser or equal to 0.5. So RAwts+ppwts
≤ 0.5. To this end, in the algorithm and its implementation, the
values of RAwts and ppwts are set equal to 0.15 and 0.35 respectively.
Moreover, the variables numerical_value_1 and numerical_value_2
correspond to the real and non-binary numbers 1 and 0 respectively.

Tables 1 and 2 provide an example of the values assigned to
the parameters and properties tuple as well as the weight. In the
algorithm there are no names corresponding to each value in the
tuple, but the position of the value indicates to which parameter it
corresponds to.

To each entry in the parameter and property tuple a weight value
corresponds which indicates the significance of each property and
parameter to the computation of the ppts value. In the eventmultiple
devices join the network simultaneously then there are multiple
tuples of both kinds. In such a case the algorithm may treat the
multitude of tuples as matrices.
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Table 1: Context parameters and IoT device properties tuple

Context Parameter/
Device property

Location User
owner

Orgowner Application
Context 1

Application
Context 2

TPM SGX Computational
Resources

1 1 0 1 0 0 1 0.9

Table 2: Context parameters and device properties weights tuple

Location
Weight

User owner-
weight

OrgOwner
weight

Application
Context 1 weight

Application
Context 2 weight

TPM
weight

SGX
Weight

Computational
resources weight

0.1 0.5 0 0.9 0 0.9 0.7 1

Algorithm 1 Cold start trust score calculation
Input: Devstate IoT device’s Internal state

K shared key between IoT device and verifier
R BARRETT RA report
pp [] parameters and properties tuple
ppweight [] weight of properties and parameters tuple
ppts property and parameter-based trust score
RAts Remote Attestation-based trust score
RAwts weight of RA-based trust score
ppwts weight of property and parameter-based trust score
m: end of pp tuple and ppweight tuple
Output: csts initial trust score
begin
RAwts← 0.15
ppwts ← 0.35

/* Attest IoT device*/
if R = True then

RAts← numerical_value_1
else

RAts← numerical_value_2
end if
for j ∈ [0, m] do

ppts←WeightedAverage(pp[j], ppweight[j])
end for

/*Computation of cold start trust score as a weighted sum*/
csts← ppts*ppwts+RAts*RAwts
end

4 SECURITY CONSIDERATIONS AND
PROPOSED SOLUTIONS

4.1 Security considerations
This section describes the security properties of the proposed ap-
proach as well as its threat and adversary model. The proposed
approach does not consider TM related attacks since it focuses on
the cold start problem of IoT devices that just arrived in the system.
These devices had not time to interact with any other entity in
the network. Thus, in the context of this work a newcomer IoT
device has not managed yet to perform TM related attacks such as
bad-mouthing, ballot stuffing, good-mouthing, self-promotion and
on-off attacks [1, 8, 23].

With respect to adversaries, a potential type of adversary in
the current context are malicious VNs which aim to attack an IoT
device to make it unavailable to its legit users. In the context of this
work VNs can only do that by performing a CDoS attack. There
are two scenarios of CDoS attacks. In the first a VN may conduct
a CDoS attack on its own against an IoT device. In the second
scenario, multiple VNs may collude with each other to perform a
more powerful CDoS attack against the prover by attempting to
send multiple ARs simultaneously. The main incentive behind a
collusion based CDoS attack is sharing the cost in terms of fees
among malicious VNs thus making the CDoS more affordable. The
trustworthiness of VNs is not subject to evaluation since, unlike
IoT devices, they do not provide any service for consumption.

4.2 Proposed solutions and countermeasures
The most prominent security property of the presented approach
is the absence of single points of failure. More specifically, the pro-
posed mechanism achieves that by having more than one entity
perform trust score computations. These entities are the VNs. There-
fore, in case one VN becomes unavailable another may take over
its tasks. Additionally, another defense of the described mechanism
against single points of failure is the BC it utilizes. In particular, the
BC acts as an immutable log that stores ARs, attestation reports as
well as csts in the form of transactions. Moreover, since both the
VNs and the IoT devices sign the transactions they submit to the
BC, the mechanism provides no repudiation of actions.

Another security property of the proposed mechanism is that
it provides protection from CDoS attacks against IoT devices. In
particular, it achieves that by utilizing the BARRETT RA method
and particularly through the latter’s AR fees and smart contracts.
To perform a CDoS attack a VN must send multiple ARs to an
IoT device within a period of time. However, the fees the VN has
to pay in BARRETT to send multiple ARs make such an attack
prohibitively expensive in terms of monetary cost. Subsection 4.1
mentions another attack scenario in which many VNs may collude
to share the monetary cost of performing a CDoS attack to make
it more affordable on an individual level. To counter this attack
scenario, the presented approach sets through a smart contract a
limit to the number of ARs that can reach a prover in a period of time.
Thus, preventing concurrent CDoS attacks against an IoT device
from multiple VNs. This limitation the smart contract imposes
also applies to the case in which one VN sends ARs to one prover.
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Another property of BC that plays a role in defending IoT devices
from CDoS attacks are the delays that the transaction validation
process (mining) incurs. These delays in some cases last a few
seconds while in other cases can last many minutes.

5 PERFORMANCE EVALUATIONS
5.1 Experimental setup
The focal point of this work is to produce a cold start trust score
computation algorithm for IoT devices. Thus, the algorithm de-
scribed in subsection 3.2 was implemented in python version 3.8 on
the anaconda python SDK, using the Spyder Python compiler and
utilized the NumPy python mathematical library. More specifically,
the parameters and properties-based trust score (ppts) calculation
function was implemented as a weighted average that receives as
inputs the properties and parameters values described in section
3.2 as well as their respective weights. Furthermore, the overall cold
start trust score calculation functionality was also implemented
which is essentially a weighted sum of RAts and ppts.

The implementation assumes that the RA process of the pro-
posed CSTSF mechanism has concluded. Thus, the implementation
of the cold start trust score computation mechanism receives as
inputs only the verification outcome of the RA report which has a
value equal to 0 or 1. The RA algorithm is outside this implementa-
tion’s scope. The BC infrastructure was not implemented since the
implementation of the algorithm starts after the RA concludes.

To evaluate the performance, resources consumption and cor-
rectness of the algorithm data were necessary. That is the reason
pseudo random datasets were generated with values similar to
those the tables of subsection 3.2 contain. Each dataset represents
one of those two tables and are stored as csv files. Thus, there is a
respective dataset for the weight of each value and for the values
(properties and parameters) themselves. However, the size of each
of those datasets changes according to the number of IoT devices
that join the system. For example, for 500 newcomer devices each
dataset has 500 rows. an additional pseudorandom dataset was gen-
erated with values which represent the success or failure of the RA
process. More specifically, 0 represents failure of the RA process
while 1 signifies success. Each value corresponds to an IoT device
that underwent the RA process. Although in the algorithm this
value is the outcome of an if statement, in its implementation for
practical reasons it was decided to use this dataset and to exclude
the if statement.

The algorithm retrieves these values from the datasets and han-
dles them as two-dimensional matrices. Since the algorithm consid-
ers eight parameters and properties both the weights matrix as well
as the parameters and properties matrix have eight columns while
the number of rows depends on the number of devices that just
joined the network. However, both matrices have an equal number
of rows. Regarding the dataset that contains the RA success value,
the algorithm treats it as a single dimensional array. The values in
the weights matrix are real and belong to the closed range [0,1].
On the other hand, the values in the properties and parameters
matrix are mixed. More specifically, the first seven columns of the
matrix have binary (0 or 1) values since they indicate whether an
IoT device has a particular property and that certain parameters
hold true for it. The last column of the properties and parameters

Figure 3: CSTS calculation time for different numbers
groups of IoT nodes

matrix contains values regarding the rating/score of the IoT device
in terms of computational resources. The rating/score is a real num-
ber in the closed range [0,1]. The two matrices have dimensions n
x 8 with n representing the number of IoT devices that just joined
the network while 8 corresponds to the number of properties and
parameters. The tuple containing the RA verification outcomes has
n elements.

5.2 Results and discussions
The algorithm’s implementation was tested on a desktop, which
in the context of this work acts as a VN, running Windows 10
equipped with an AMD Ryzen 5 CPU, 16 GB of RAM and a 500
GB SSD drive. The focus of the test was to determine the time
required for the VN to calculate the cold start trust score for groups
of newcomer nodes. The first group comprised 100 IoT nodes while
for the remaining groups and for each iteration of the test their
population kept incrementing by 50 until 1000 newcomer nodes.
Figure 3 indicates that there is an almost linear relationship between
the newcomer nodes and the time required to perform the csts
calculations. The duration of the cold start trust score calculation
for almost all groups is in in the order of milliseconds.

The performance of the solution was also evaluated against a
memory consumption point of view. More specifically, the algo-
rithm was evaluated in terms of memory consumption for different
numbers of concurrently arriving IoT nodes. As seen in Figure 4, for
250 arriving nodes the peak memory consumption reaches 0.44323
Mega Bytes (MB), for 500 newcomer IoT nodes 0.845734 MB, for
750 newcomer IoT nodes 1.2447766 MB and for 1000 newcomer IoT
nodes 1.797037 MB. These measurements indicate that there is a
linear relationship among the number of arriving nodes and the
memory consumed by the algorithm.

The above linear relationships indicate that the algorithm will
demand more computational memory resources as the IoT network
grows. Nevertheless a carefull study of the obtained results reveals
that for 1000 IoT nodes arriving concurrently in the network the
solution ensures individual initial trust scores for all of them in less
than 6 ms. This tradeoff between the computational and memory
resources and the initial trustworthiness of each IoT device allowed
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Figure 4: CSTS calculation memory consumption for different numbers of IoT nodes

in the network renders the proposed solution ideal for situations
where there are no means of determining the trust level of each
IoT device. Additionally, the algorithm was executed locally on
a desktop environment while executing it on a cloud computing
setting will yield better results with respect to performance.

6 CONCLUSION
This paper proposed a solution combining the BARRETT RA pro-
tocol with a trust score computation model to solve the cold start
problem in IoT networks. The proposed approach uses an RA mech-
anism to partially formulate the csts that prevents CDoS attacks
against IoT devices. Something that no other TM approach that
utilizes RA to compute csts considers. However, the presented ap-
proach inherits the main drawbacks of BARRETT RA which are
the high delays owed to its BC infrastructure. Moreover, BARRETT
can become prohibitively expensive to honest VNs that wish to
frequently monitor the status of an IoT device and thus must send
a proportional number of attestation requests. From a performance
point of view, the solution showcases an almost linear increase in
the time required to compute the trust score for increasing num-
bers of IoT devices that join the network, as well as in the memory
capacity required for the calculations. Nevertheless, the cost of the
computational memory resources consumed is dwarfed next to
the benefit of achieving a justified initial trustworthiness of each
device.

Future work will be focused on implementing the RA protocol
and, integrating it to the described algorithm and implementing
them to the BC network. Furthermore, the optimization of the al-
gorithm’s complexity is going to be addressed through improving
its implementation and runtime. The aim is to have a fully work-
ing and efficient prototype of the presented architecture that will
facilitate the interaction among all components optimally in terms
of efficiency and performance.
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